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7. EXAMPLES OF 

CHARACTER TABLES 
 

§ 7.1. Character Tables of Cyclic Groups 
 If  = e2i/n, and G is the cyclic group A | An, the 

map Ak → k is an isomorphism and hence a faithful 

representation. Being a linear representation it is its own 

character. So we get a character  such that (Ak) = k. 

Powers of  give all the other irreducible characters. 

 

Example 1: C2  = A|A2 

class 1 A 

size 1 1 

1 1 1 

2 1 −1 

order 1 2 

 

Example 2: C3 = A|A3 

class 1 A A2 

size 1 1 1 

1 1 1 1 

2 1  2 

3 1 2  

order 1 3 3 
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Example 3: C4 = A|A4 

class 1 A A2 A3 

size 1 1 1 1 

1 1 1 1 1 

2 1 i −1 −i 

3 1 −1 1 −1 

4 1 −i −1 i 

order 1 4 2 4 

 

Example 4: C6 = A|A6 = 1  Let  = e2i/6. 

class 1 A A2 A3 A4 A5 

size 1 1 1 1 1 1 

1 1 1 1 1 1 1 

2 1  2 3 4 5 

3 1 2 4  3 4 

4 1 3 1 3 1 3 

5 1 4 2 1 4 2 

6 1 5 4 3 2  

order 1 6 3 2 3 6 

This follows the general pattern, whereby rs = (r−1)(s−1). 

However C6  C2  C3. 

Let B have order 2 and C have order 3 and let A = BC, 

which has order 6. Taking the character tables for C2 and 

C3 we can construct the character table for C6 as follows: 
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class 1 A4 A2 A3 A A5 

 (1, 1) (1, C)  (1, C2) (B, 1) (B, C) (B, C2) 

size 1 1 1 1 1 1 

1 1 1 1 1 1 1 

2 1  2 1  2 

3 1 2  1 2  

4 1 1 1 −1 −1 −1 

5 1  2 −1 − −2 

6 1 2  −1 −2 − 

order 1 3 3 2 6 6 

 

By observing that 2 =  and 3 = −1 we can reconcile 

these tables as being the same, after suitable 

rearrangement. 

 

§ 7.2. Character Tables of Abelian Groups 
Example 5: Find the character table of C2  C2  C3. 

Solution: The character tables for C2  C2 and C3 are 

respectively: 

 

 

 1 A B AB   1 C C2 

size 1 1 1 1  size 1 1 1 

1 1 1 1 1  1 1 1 1 

2 1 −1 1 −1  2 1  2 

3 1 1 −1 −1  3 1 2  

4 1 −1 −1 1  order 1 3 3 

order 1 2 2 2      
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Hence the character table for (C2  C2)  C3 is 

class 11 A1 B1 AB1 1C AC BC ABC 

order 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

2 1 −1 1 −1 1 −1 1 −1 

3 1 1 −1 −1 1 1 −1 −1 

4 1 −1 −1 1 1 −1 −1 1 

5 1 1 1 1     

6 1 −1 1 −1  −  − 

7 1 1 −1 −1   − − 

8 1 −1 −1 1  − −  

9 1 1 1 1 1 2 2 2 

10 1 −1 1 −1 1 −2 2 −2 

11 1 1 −1 −1 1 2 −2 −2 

12 1 −1 −1 1 1 −2 −2 2 

order 1 2 2 2 3 6 6 6 

 

  class 1C2 AC2 BC2 ABC2 

order 1 1 1 1 

1 1 1 1 1 

2 1 −1 1 −1 

3 1 1 −1 −1 

4 1 −1 −1 1 



 127 

 

class 1C2 AC2 BC2 ABC2 

order 1 1 1 1 

5 2 2 2 2 

6 2 −2 2 −2 

7 2 2 −2 −2 

8 2 −2 −2 2 

9 2    

10 2 −  − 

11 2  − − 

12 2 − −  

order 3 6 6 6 

 

§ 7.3. Character Tables of Dihedral 

Groups 
Example 6:  D8 = A, B | A4, B2, BA = A−1B 

The conjugacy classes are: {1}, {A2}, {A, A3}, {B, A2B}, 

{AB, A3B}. H = <A2> is a normal subgroup of order 2 

and G/H  ℤ2  ℤ2. 

 

class 1 A, 

A3 

A2 B, 

A2B 

AB, 

A3B 

 

size 1 2 1 2 2  

1 1 1 1 1 1 trivial character 

2 1 1 1 −1 −1 from G/A2 

3 1 −1 1 1 −1 from G/A2 
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4 1 −1 1 −1 1 can be induced 

from G/A2 

5 2 0 −2 0 0 obtained by 

orthogonality 

order 1 4 2 2 2  

 

Example 7:  D10 = A, B | A5, B2, BA = A−1B  

The conjugacy classes are: {1}, {A2, A4}, {A, A4}, {B, 

AB, A2B, A3B, A4B}. H = <A5> is a normal subgroup of 

order 5 and G/H  ℤ2. 

 

1 = {1}, 2 = {A, A4}, 3 = {A2, A3}, 4 = {AkB}. 

class 1 2
 3

 4
  

size 1 2 2 5  

1 1 1 1 1 trivial character 

2 1 1 1 −1 induced G/A5 

3 2 −1 + 5

2
  −  

1 + 5

2
  

0  

4 2 −1 − 5

2
  −  

1 − 5

2
  

0 orthogonality 

order 1 5 5 2  

 

Explanation: 

Since there are 4 conjugacy classes there are 4 irreducible 

character, and so the degrees of 3 and 4 must both be 2. 

 Inducing up from the subgroup A5 the degree 1 

character: 
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1 A A2 A3 A4 

1  2 3 4 

(where  = e2i/5) we get the character 

class 1 2
 3

 4
 

size 1 2 2 5 

 2  1  1 
2  1  

 + 4

2
  2  1  

2 + 3

2
  

0 

 

for D10, that is: 

 

class 1 2
 3

 4
 

size 1 2 2 5 

 2 
2cos 

2

5
  2cos 

4

5
  

0 

 

Since cos
2

5
  = 

−1 + 5

4
  and cos

4

5
 = − 

1 + 5

4
  we can 

write this as: 

 

class 1 2
 3

 4
 

size 1 2 2 5 

 2 −1 + 5

2
  − 

1 + 5

2
  

0 

 

Since | = 1, this is irreducible. We can complete the 

table by orthogonality. 
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 The general dihedral group is: 

D2n = A, B | An, B2, B−1AB = A−1. 

 

If n is odd the class equation is: 

2n = 1 + 2 + 2 + .. + 2 + n 

and there are ½(n + 3) irreducible characters: 2 linear and 

½(n − 1) of degree 2. 

 

If n is even the class equation is: 

2n = 1 + 1 + 2 + 2 + .. + 2 + ½n + ½n 

and there are ½(n + 6) irreducible characters: 4 linear and 

½(n − 2) of degree 2. 

 

§ 7.4. Character Tables of Permutation 

Groups 
Example 7: S3 

class I () ()  

size 1 2 3  

1 1 1 1 trivial character 

2 1 1 −1 induced from G/A3 

3 2 −1 0 orthogonality 

order 1 3 2  

The permutation character is [3, 0, 1] = 1 + 3. 

NOTE: S3 is isomorphic to D6. 
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Example 8: S4 

The trivial character and the permutation character are: 

 

class I ()() () () () 

size 1 3 8 6 6 

1 1 1 1 1 1 

 4 0 1 2 0 

 

Since | = 2 = 12 + 12,  must be the sum of two 

irreducible characters. 

Since |1 = 1,  must be 1 plus another 

irreducible character. So  − 1 is an irreducible 

character. Thus we can complete the character table for 

S4. 

To save space we represent a cycle structure by 

writing down the numbers in each cycle. (Remember that 

all permutations with the same cycle structure form a 

single conjugacy class in Sn.) So ()() will be denoted 

by 2.2 and () by 4. 

 

class I 2.2 3 2 4  

size 1 3 8 6 6  

1 1 1 1 1 1 trivial character 

2 1 1 1 −1 −1 induced G/A4 

3 2 2 −1 0 0 orthogonality 

4 3 −1 0 −1 1 = 25 

5 3 −1 0 1 −1 5 =  − 1 

order 1 2 3 2 4  
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Example 9: S5 

class I 2.2 3 5 2 4 2.3 

size 1 15 20 24 10 30 20 

1 1 1 1 1 1 1 1 

2 1 1 1 1 −1 −1 −1 

3 4 0 1 −1 2 0 −1 

4 4 0 1 −1 −2 0 1 

5 5 1 −1 0 1 −1 1 

6 5 1 −1 0 −1 1 −1 

7 6 −2 0 1 0 0 0 

order 1 2 3 5 2 4 6 

 

Explanation: 

1 is trivial and 2 can be obtained by inducing up from 

S5/A5  C2. The permutation character is: 

1 5 1 2 0 3 1 0 

This gives 3 = 1 − 1 and 4 = 32. 

 The sum of squares of the degrees is 120 so the sum 

of squares of the remaining irreducibles is 86. A little 

calculation reveals that there are only two solutions to 

a2 + b2 + c2 = 86 

for positive integers a, b, c. They are 1, 2, 9 and 5, 5, 6. 

The first case is impossible because it would imply 

another linear character. 

 

None of its value could be 0 (they have to be roots of 

unity) so multiplying by 2 would give a fourth linear 

character, a contradiction. 
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Hence we may take 5, 6, 7 as being of degrees 5, 5 and 

6 respectively. Clearly 72 = 7 (it is the only irreducible 

of degree 6) so the last three entries in the 7 row must be 

zero and the two entries immediately above them must 

each total zero. 

 

Also, corresponding entries in the rest of 5, 6 must be 

equal. With a fair amount of effort one can now complete 

the character table by orthogonality. (Remember that 

since all classes are their own inverses all the characters 

are real.) The calculations can be made somewhat easier 

by calculating 4
2: 

 

2 16 0 1 1 4 0 1 

 

This contains 1 and 3 so let 3 = 2 − 1 − 3: 

3 11 0 −1 1 1 −1 1 

 

Since 3 | 3 = 2, 3 is a degree 11 character which is the 

sum of two irreducible characters. It must be the sum of 

the degree 6 and one of the degree 5 characters, say 5. 

 

Knowing that the last three entries in 7 are zero enables 

us now to easily complete the last three columns and with 

a little more work we complete the table. 

 

 We can save even more work by inducing the 

degree 2 character of S4 up to S5: 
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4 10 2 −2 0 0 0 0 

Neither of the degree 4 characters are present so it must 

be the sum of the two degree 5 characters. 

 

Knowing 52 = 6 and 5 + 6 = 4 we can readily 

complete the table.  

 

Example 10: A5 

Here the 24 5-cycles split into two classes of size 12. 

To work out the class size of a permutation you work out 

the size of its centraliser – that is, the number of 

permutations that commute with it. 

 

A typical 3-cycle (123) commutes with I , (123) and (132) 

as well as any permutation on {4, 5}. Moreover it 

commutes with any product of these. Hence the 

centraliser has order 3  2 = 6. The size of the conjugacy 

class is the index of the centraliser so, in this case, it is 
60

6
 

= 10. Since there are only ten 2-cycles altogether they 

must all be in the one conjugacy class. Repeating this for 

the other cycle structures we find that permutations with 

the same cycle structure form a single conjugacy class in 

A5 except the 5-cycles. Here the centraliser of a 5-cycle is 

the cyclic group it generates, and so has order 5 and hence 

index 12. Since there are 24 5-cycles they must split into 

2 conjugacy classes. 
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class I 2.2 3 5 

size 1 15 20 12 12 

1 1 1 1 1 1 

2 3 −1 0 1+ 5

2
 

1− 5

2
 

3 3 −1 0 1− 5

2
 

1+ 5

2
 

4 4 0 1 −1 −1 

5 5 1 −1 0 0 

order 1 2 3 5 5 

 

Explanation: 

1 is trivial. The permutation character is: 

 

1 5 1 2 0 0 

 

Hence we find 4 = 1 − 1. 

 Since the sum of squares of the degrees must total 

60 we deduce that the remaining irreducible characters 

must have degrees 3, 3 and 5. 

 Since 2((12)(34)), 3((12)(34)) and 5((12)(34)) 

must be sums of 1’s and so their values must be 1 or 

3 for 2 and 3 and 1, 3 or 5 for 5. By considering 

the lengths of 2, 3 and 5 we discover that 3 or 5 are 

too big and a little more investigation reveals that the 

values are as given in the second column of the character 

table. The remainder of the table can be completed by 

some extensive orthogonality calculations. 



 136 

 A quicker method of completing the table uses the 

technique of inducing up from subgroups. Inducing up 

from A4 gives: 

 

1 5 1 2 0 0 

2 5 1 −1 0 0 

3 15 −1 0 0 0 

 

(The two non-trivial linear characters of A4 both give 2 

when induced up.) 

5 = 2 and 4 = 1 − 1. Now 3 contains one copy of each 

of 4 and 5. Subtracting we get: 

 

4 6 −2 0 0 0 

 

Since 4 | 4 = 2, 4 is the sum of two irreducible 

characters. Since the sum of squares of the degrees = 60, 

having obtained 1, 4, 5 we conclude that the remaining 

characters have degree 3 and that 4 is their sum. With 

this knowledge, and orthogonality, we find 2 and 3. 

 

§ 7.5. Character Tables of Linear Groups 
Example 11: GL(2,3) This is the group of all invertible 

2  2 matrices over ℤ3. We’ll denote this by G. 

The first thing to do is to find out the order of G. 

Now the number of 2  2 matrices altogether, over ℤ3 is 

34 = 81. To be invertible the rows of the matrix must be 

linearly independent. For the first row this simply means 
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that it has to be non-zero, so there are 8 possibilities. For 

each of these the second row has to be anything except 

the 3 multiples of the first row. This gives |G| = 8  6 = 

48. 

 

We now need to find the conjugacy classes, or to 

use the language of linear algebra, the similarity classes. 

Brute strength would seem far too tedious, but remember 

that similar matrices have the same characteristic 

polynomial. So we’ll enumerate all the possible 

characteristic polynomials and then find how many 

matrices share each such polynomial. Of course if two 

characteristic polynomials are different the corresponding 

matrices cannot be similar, but if two matrices have the 

same characteristic polynomial that doesn’t guarantee 

that they are similar. Still, that seems to be a good place 

to start. 

There are 9 monic quadratics over ℤ3, but clearly 

we must reject those that have zero constant term. The 

corresponding matrices will have a zero eigenvalue and 

hence cannot be invertible. So there are just 6 possible 

characteristic polynomials: 2  1and 2    1. (It’s 

convenient to write 2 as −1.) 

Now, of course, these eigenvalues may not be in ℤ3. 

Some of these polynomials will be prime over ℤ3, but that 

doesn’t matter. 

Let’s write the characteristic polynomial in the 

form 2 − t + , where t is the trace and  is the 

determinant. We must have   0. 



 138 

For each such polynomial we’ll find the number of 

matrices 






a  b

c  d
 whose characteristic polynomial is 

2 − t + . 

Since the trace is t we will have 3 choices for a and 

that will determine d. 

Now the determinant  = ad − bc so that if b  0 (2 

choices) we will have c = 
ad − 

b
  and so 6 matrices of the 

form 






a  b

c  d
  with that characteristic polynomial. 

But if b = 0, c can be arbitrary. 

But we must have a(t − a) = , that is, a2 − at +  = 0. 

The discriminant of this quadratic is D = t2 − 4 = t2 − , 

since we are working over ℤ3. 

If D = 0 there is 1 solution for a, 

if D = 1 there are 2 and 

if D = 2 there are none. 

 

These give an additional 3, 6 or 0 matrices respectively 

for each of the relevant characteristic polynomials. 

 

t  D # with 

b  0 

# with 

b = 0 

# matrices zeros 

0 1 2 6 0 6  

0 2 1 6 6 12 1, 2 

1 1 0 6 3 9 2, 2 

1 2 2 6 0 6  

2 1 0 6 3 9 1, 1 
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2 2 2 6 0 6  

 

If () has zeros in ℤ3 then matrices with that 

characteristic polynomial are similar to a Jordan Form, 

giving one conjugacy class if () has distinct zeros and 

2 conjugacy classes if it has a repeated zero (one class will 

consist of a single scalar matrix). Thus GL(2, 3) has 8 

conjugacy classes. 

A simple calculation of the centralisers of the matrices 







0 1

2 0
 , 







0 1

1 1
 , 







1 1

2 1
 shows that they each have 6 

conjugates. 

 

  tr  size 

1 







1 0

0 1
  

2 1 1 

2 






2 0

0 2
  

1 1 1 

3 






0 1

2 0
 






0 2

1 0
 






1 1

1 2
 






1 2

2 2
 






2 1

1 1
 






2 2

2 1
  

0 1 6 

4 






0 1

1 1
 






0 2

2 1
 






1 1

1 0
 






1 2

2 0
 






2 1

2 2
 






2 2

1 2
  

1 2 6 

5 






0 1

1 2
 






0 2

2 2
 






1 1

2 1
 






1 2

1 1
 






2 1

1 0
 






2 2

2 0
  

2 2 6 

6 






0 1

2 1
 






0 2

1 1
 






1 1

2 0
 






1 2

1 0
 






2 0

1 2
 






2 0

2 2
  







2 1

0 1
 






2 2

0 2
  

1 1 8 
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7 






0 1

2 2
 






0 2

1 2
 






1 0

1 1
 






1 0

2 1
 






1 1

0 1
 






1 2

0 1
  







2 1

2 0
 






2 2

1 0
  

2 1 8 

8 






0 1

1 0
 






0 2

2 0
 






1 0

0 2
 






1 0

1 2
 






1 0

2 2
 






1 1

0 2
  







1 2

0 2
 






2 0

0 1
 






2 0

1 1
 






2 0

2 1
 






2 1

0 1
 






2 2

0 1
  

0 2 12 

 

Now we have to start finding characters. To begin 

with, SL(2, 3), the group of matrices with determinant 1, 

will be a normal subgroup of index 2. This will give a 

non-trivial linear character. 

Let representatives of the 8 conjugacy classes be as 

follows: 

1 2 3 4 5 6 7 8 







1 0

0 1
  







2 0

0 2
  







0 1

2 0
  







0 1

1 1
  







0 1

1 2
  







0 1

2 1
  







0 1

2 2
  







0 1

1 0
  

 

 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

  

 There’s just one other proper, non-trivial normal 

subgroup, namely the non-zero scalar matrices. These are 

in fact the elements of the centre of G, which is clearly a 

normal subgroup of order 2. The quotient group will have 
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order 24. Perhaps G/Z(G) is isomorphic to S4. Can we find 

4 things that the elements of G permute? 

They permute the non-zero row vectors by 

multiplication on the right. But that would give a quotient 

that’s isomorphic to a subgroup of S8. However the 8 non-

zero row vectors form four 1-dimensional subspaces and 

these will be permuted by right multiplication. 

Note that we don’t need to fully identify which 

permutation corresponds to each matrix, only the number 

of subspaces fixed by the matrix. So our permutation 

representation won’t distinguish between matrices that 

induce an () permutation and those that induce a 

()() permutation. The value of the character will be 

0 in each case (no elements fixed). 

After a little work we can produce a permutation 

character, , of degree 4. 

 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

 4 4 0 0 0 1 1 2 

 

Now | = 
16 + 16 + 0 + 0 + 0 + 8 + 8 +48

48
  = 2, so  is 

the sum of two irreducibles. 

Moreover 1| = 1 so a new irreducible character is 



 142 

3 =  − 1. And since 32  3 it must be yet another 

irreducible character that we can call 4. So now we are 

well on the way. 

 

 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5         

6         

7         

8         

order 1 2 4 8 8 6 3 2 

 

 We might be able to use the fact that the quotient 

G/Z(G) is isomorphic to S4. But let’s see what we can do 

by inducing up from subgroups. Even inducing up from 

the trivial character can be useful. But we need some nice 

big subgroups so that the degree of the induced character 

is small. 

 The subgroup SL(2, 3), consisting of matrices with 

determinant 1 is nice and big. It has index 2 and so gives 

a character of degree 2. Unfortunately it is just 1 + 2. 

The problem is that it doesn’t cut across conjugacy 

classes. Every conjugacy class is either entirely in or 

entirely out and so the proportions are either 1 or 0. 
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 But the upper triangular matrices gives a fairly 

large subgroup. These are those of the form 






* *

0 *
  and 

they form a subgroup, U, of order 12. Likewise the lower 

triangular matrices form another subgroup, L, of order 12. 

Inducing up from these we get degree 4 characters. 

Unfortunately these turn out to be 1 + 3 and 1 + 3. All 

we have done is to provide an alternative way of getting 

3 and 4.  

 

Let H be the cyclic subgroup generated by A = 






0 1

1 1
 . 

Then A2 = 






1 1

1 2
 , A3 = 







1 2

2 0
 , A4 = 







2 0

0 2
 , A5 = 







0 2

2 2
 , 

A6 = 






2 2

2 1
 , A7 = 







2 1

1 0
 . 

Inducing the trivial character up from H we get: 

 

class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

 6 6 2 2 2 0 0 0 

 

Now | = 3, |1 = 1 and |4 = 1. 

Hence 5 =  − 1 − 4 is a new irreducible character of 

degree 2. 

 

We’re doing well. 
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class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5 2 2 2 0 0 −1 −1 0 

6         

7         

8         

order 1 2 4 8 8 6 3 2 

 

The sums of squares of the remaining three degrees must 

total 24 and the only solution is 

16 + 4 + 4 = 24. 

Also the ‘length’ of each column (sum of squares of the 

moduli) must total 24 divided by the respective sizes of 

the conjugacy classes, and this allows us to fill in a lot of 

the cells with zeros. 

 

class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5 2 2 2 0 0 −1 −1 0 

6 4  0     0 
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7 2  0     0 

8 2  0     0 

order 1 2 4 8 8 6 3 2 

 

Now 6(7) must be real (otherwise its conjugate would 

be another degree 4 irreducible) and the only possible real 

numbers that can be made up from the set {1, , 2} are: 

1 + 1 + 1 + 1 = 4 and 1 + 1 +  + 2 = 1. 

But 4 would be too big for the ‘length’ of the 7 column 

to be 6. Besides if all the eigenvalues were 1 then the 

elements of 7 and would therefore be their only 

conjugate. So 6(7) = 1. The remaining entries in the 7 

column must be the sum of two numbers chosen from {1, 

, 2}. Moreover they must be real since 7
−1 = 7. (We 

can see this without any matrix calculations because if it 

was otherwise there would be another conjugacy class 

where the elements have order 3.)  The only possibilities 

are therefore 1 + 1 = 2 (impossible the “length” of column 

7 would be too big) or  + 2 = −1. So these entries are 

both −1. 

If a = 6(2), b = 7(2) and c = 8(2), then by column 

orthogonality we get: 

4a + 2b + 2c = − 24 and a − b − c = 0 from which we 

deduce that a = −4 and b + c = 4. 

Now b, c must be each one of 2, 0 or −2 and the only way 

we can get orthogonality with the first column is for them 

to both be −2. 
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class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5 2 2 2 0 0 −1 −1 0 

6 4 −4 0    1 0 

7 2 −2 0    −1 0 

8 2 −2 0    −1 0 

order 1 2 4 8 8 6 3 2 

 

Nearly there! 

 

If in the 4 and 5 columns the entries for 6, 7 and 8 

are a, b, c respectively then by orthogonality with the 1st 

and 7th columns we have 4a + 2b + 2c = 0 and a − b − c = 

0, which gives a = 0 and b + c = 0. So we can write 0, x 

and −x for 4 and 0, y, −y for 5. 

 

If a, b, c are the corresponding entries in the 6 column 

then 4a + 2b + 2c = 0, as before. But this time we get 

3 + a − b − c = 0. 

Taken together these give a = − 1 and b + c = 2. 
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class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5 2 2 2 0 0 −1 −1 0 

6 4 −4 0 0 0 −1 1 0 

7 2 −2 0 x y z −1 0 

8 2 −2 0 −x −y 2 − z −1 0 

order 1 2 4 8 8 6 3 2 

 

Nearly there! 

 

Now the entries in the 6 column must be real because 

clearly  6
−1 = 6 (it is the only conjugacy class with 

elements of order 6) and hence z is real. Using the 

“length” of the 6 column we have 4 + z2 + (2 − z)2 = 6 

and hence z = 1. Since 4
−1 = 5 we must have x, y being 

conjugates of one another and since we can’t have two 

identical columns x, y are not real. It follows that 8 is the 

conjugate of 7 and so, −x is the conjugate of x. This 

means that x is pure imaginary, as is y. 

But by the “length” of the 4 column, 4 + 2|x|2 = 8 

and so |x| = 2. 

Hence x = 2i and y = 2i. They must have opposite 

signs so, without loss of generality we may take x = 2i 

and y = −2i. The completed table is now as follows: 
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class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

1 1 1 1 1 1 1 1 1 

2 1 1 1 −1 −1 1 1 −1 

3 3 3 −1 −1 −1 0 0 1 

4 3 3 −1 1 1 0 0 −1 

5 2 2 2 0 0 −1 −1 0 

6 4 −4 0 0 0 −1 1 0 

7 2 −2 0 2i −2i 1 −1 0 

8 2 −2 0 −2i 2i 1 −1 0 

order 1 2 4 8 8 6 3 2 

 

Phew!  That was hard work. But there are other things we 

might have done. For example, if  = e2i/8 = 
1 + i

2
  we 

could have induced up the character (xr) = r from H to 

G. This would have given the character 

 

class 1 2 3 4 5 6 7 8 

size 1 1 6 6 6 8 8 12 

G 6 −6 0 2i −2i 0 0 0 

 

It turns out that this is 6 + 7 but we would have had some 

work to do to split it. 

 

Perhaps we should have used the fact that G/Z(G)  S4 at 

the very beginning. We would have had to establish this 
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isomorphism by looking at the permutations that the 

matrices have on the 1-dimensional subspaces and then 

working out how the conjugacy classes of S4 (there are 

five of them) stretch out to the eight classes for G. In any 

case this would only have given us five of the eight 

irreducible characters so we would still have had some 

work in finding the remaining three. 

 

§ 7.6. Techniques for Constructing 

Character Tables 
 By now you will have realised that constructing 

character tables doesn’t involve a straightforward 

algorithm. It’s more like doing a jigsaw puzzle, or solving 

a Sudoko problem, only much more challenging. There 

are several techniques that need to be employed, usually 

in conjunction with one another. Each technique supplies 

a piece but it requires considerable experience to decide 

in advance which ones are best to employ at each stage. 

The techniques are: 

(1) Use the direct sum technique if your group is a direct 

sum of smaller groups. 

 

(2) Induce up from quotient groups. This will give you 

irreducible characters straight away. The smaller the 

normal subgroup, the larger the quotient group and the 

more irreducibles you can get in one go – provided you 

have the character table for the quotient. Of course this 

technique is useless for simple groups! 
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(3) Induce up from subgroups. More often than not this 

will give you reducible characters. You may be lucky to 

find irreducible characters that you have already 

constructed within them and so be able to subtract them 

off to get to an irreducible one. Here we want to use large 

subgroups so as to get smaller degrees. If the degree is too 

large the character may have too many summands to be 

able to split it up. At least there will always be plenty of 

subgroups to try, even in a simple group. Very often 

inducing up from the trivial character of a subgroup can 

be quite useful, and one doesn’t need to know the 

character table of the subgroup for that. But sometimes it 

is useful to find at least some of the characters of the 

subgroup and to induce up from those. 

 

(4) Find some permutation representations. 

 

(5) Use orthogonality either row or column 

orthogonality. For row orthogonality don’t forget to 

weight each product by the size of the conjugacy class. 

Moreover don’t forget that one of the rows, or columns, 

must be conjugated. If one of these is real then this is the 

one you’ll conjugate and so you can forget conjugation. 

However you will get a situation where things appear to 

have gone wrong and almost certainly it will be because 

both rows or both columns contain non-real entries and 

you will have forgotten to conjugate one of the rows or 

columns. This will give you some linear equations where 
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the variables are the unknown entries. This is only useful 

as a rule if you have at most three variables.  

 

(6) Use the lengths of the rows or columns (the sum of 

squares of the moduli of the entries). For rows these 

should be equal to 1 (don’t forget to weight each by the 

size of the conjugacy class). For columns they should 

equal the order of the centralizer, that is the order of the 

group divided by the size of the conjugacy class. 

 

(7) Identify when conjugacy classes are inverses of one 

another and which are their own inverses. If −1 =  then 

its column will only contain real entries. If i
−1 = j the 

corresponding entries in two columns will be complex 

conjugates of one another. Do the same with the rows. For 

example if there is only one irreducible with a certain 

degree it clearly must be its own conjugate and hence 

have real entries. 

 

(8) Use the fact that the value of a character of degree 

n on a conjugacy class whose elements have order m 

must be the sum of n mth roots of unity. This is 

particularly useful when the degree and order are small. 

For example, if n = 2 and m = 2 then the entry must be 2, 

0 or −2. If n = 2 and m = 3 the entry must be 2, 1 + , 1 + 

2, 2, 22 or −1 (=  + 2). If you know that it is real 

then 2 or −1 are the only possibilities. 
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(9)  If you can find G  then you can use the fact that 

|G:G | is the number of linear characters. 

 

(10) Where a conjugacy class has size 1 the entries in 

that column must have the same absolute value as the 

degree. That is because these elements will be in the 

centre, and so correspond to scalar matrices in the 

underlying representation. All entries for conjugacy 

classes of size bigger than 1 must have modulus strictly 

smaller than the degree. 

 

There is a list of character tables for groups whose order 

is at most 16 in a document under the TABLES tab on the 

Postgraduate page on this website. Ultimately this will 

extend to all groups whose order is at most 100, except 

for those of orders 64 and 96. 

 


